English version Frako-Term logo

Istnienie i sposób rozumienia pojęcia próżni zmieniało się w historii fizyki. W starożytnej koncepcji atomistycznej Leukipposa i Demokryta materialne atomy poruszały się w próżni. Z kolei Arystoteles uznawał, że próżnia jest niemożliwa, jest bowiem niebytem. Ruch ciał oznacza przesuwanie jednych rodzajów rzeczy (np. powietrza) i zastępowanie ich innymi (np. poruszanym ciałem). Jedno ciało zastępuje inne ciało, a pomiędzy nimi nie ma żadnych przerw. Jego następcom przypisuje się znane powiedzenie natura nie znosi próżni (horror vacui). Atomizm, wraz z uznaniem istnienia próżni, przyjmowany był m.in. przez epikurejczyków. Poglądem dominującym, aż do XVI w. był jednak arystotelizm. Problem próżni był również jednym z najważniejszych w średniowiecznej filozofii przyrody (m.in. Jan Buridan), gdzie łączono go z problematyką Boskiej władzy (czy Bóg może stworzyć próżnię?).

Kriostat z izolacją próżniową + MLI

Na przełomie XVI i XVII wieku istnienie próżni zostało wykazane empirycznie przez Torricellego (doświadczenie Torricellego). Pojęcia tego używał też Galileusz. Pojęcie próżni występuje wyraźnie w pracach Newtona, a podstawowe reguły mechaniki newtonowskiej sformułowane są w odniesieniu do ruchu ciał materialnych w próżni. Z mechaniki newtonowskiej pochodzi potoczne rozumienie próżni jako spójnego obszaru przestrzeni, w której nie ma cząstek obdarzonych masą. Stan ten nazywa się też czasem próżnią absolutną. Pod koniec XIX wieku w związku z hipotezą wypełniającego przestrzeń eteru jako nośnika fal elektromagnetycznych zaczęto kwestionować istnienie próżni. Jednakże negatywny wynik doświadczeń mających na celu wykrycie ruchu względem eteru (zwłaszcza doświadczenia Michelsona-Morleya) spowodował utrwalenie pojęcia próżni.

A vacuum pump is a device that draws gas molecules from a sealed volume in order to leave behind a partial vacuum. The job of a vacuum pump is to generate a relative vacuum within a capacity. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to antiquity.

History

The predecessor to the vacuum pump was the suction pump. Dual-action suction pumps were found in the city of Pompeii. Arabic engineer Al-Jazari later described dual-action suction pumps as part of water-raising machines in the 13th century. He also said that a suction pump was used in siphons to discharge Greek fire. The suction pump later appeared in medieval Europe from the 15th century.

17th century

By the 17th century, water pump designs had improved to the point that they produced measurable vacuums, but this was not immediately understood. What was known was that suction pumps could not pull water beyond a certain height: 18 Florentine yards according to a measurement taken around 1635, or about 34 feet (10 m). This limit was a concern in irrigation projects, mine drainage, and decorative water fountains planned by the Duke of Tuscany, so the duke commissioned Galileo Galilei to investigate the problem. Galileo suggests incorrectly in his Two New Sciences (1638) that the column of a water pump will break of its own weight when the water has been lifted to 34 feet.


19th century

The study of vacuum then lapsed until 1855, when Heinrich Geissler invented the mercury displacement pump and achieved a record vacuum of about 10 Pa (0.1 Torr). A number of electrical properties become observable at this vacuum level, and this renewed interest in vacuum. This, in turn, led to the development of the vacuum tube. The Sprengel pump was a widely used vacuum producer of this time.

Tesla's vacuum apparatus, published in 1892


20th century

The early 20th century saw the invention of many types of vacuum pump, including the molecular drag pump, the diffusion pump, and the turbomolecular pump.


Types of pumps

Pumps can be broadly categorized according to three techniques:[10]

Positive displacement pumps use a mechanism to repeatedly expand a cavity, allow gases to flow in from the chamber, seal off the cavity, and exhaust it to the atmosphere. Momentum transfer pumps, also called molecular pumps, use high speed jets of dense fluid or high speed rotating blades to knock gas molecules out of the chamber. Entrapment pumps capture gases in a solid or adsorbed state. This includes cryopumps, getters, and ion pumps.

Positive displacement pumps are the most effective for low vacuums. Momentum transfer pumps in conjunction with one or two positive displacement pumps are the most common configuration used to achieve high vacuums. In this configuration the positive displacement pump serves two purposes. First it obtains a rough vacuum in the vessel being evacuated before the momentum transfer pump can be used to obtain the high vacuum, as momentum transfer pumps cannot start pumping at atmospheric pressures. Second the positive displacement pump backs up the momentum transfer pump by evacuating to low vacuum the accumulation of displaced molecules in the high vacuum pump. Entrapment pumps can be added to reach ultrahigh vacuums, but they require periodic regeneration of the surfaces that trap air molecules or ions. Due to this requirement their available operational time can be unacceptably short in low and high vacuums, thus limiting their use to ultrahigh vacuums. Pumps also differ in details like manufacturing tolerances, sealing material, pressure, flow, admission or no admission of oil vapor, service intervals, reliability, tolerance to dust, tolerance to chemicals, tolerance to liquids and vibration.